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Abstract. Persistent homology is a recent grandchild of homology that has

found use in science and engineering as well as in mathematics. This paper
surveys the method as well as the applications, neglecting completeness in

favor of highlighting ideas and directions.

1. Introduction

Built on a sequence of spaces and the corresponding homology groups with homo-
morphism between them, persistence assesses the interval within which a homology
class contributes. Among other situations, this ability is useful when a space is
not fixed but depends on the scale of the observation, which is a common sce-
nario in the sciences. After a brief review of the historical development, we sketch
characteristics of the method.
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History. Like many other concepts in mathematics, persistent homology has a be-
ginning but also a historical root system that comes into sight when we increase
the resolution of the inquiry. This is precisely what persistent homology does for
a much more general class of spaces: it synthesizes the different views as aspects
into a single consistent reality that spans a range of scales. We mention three
main historical tracks in the root system of persistent homology. In 1990, Patrizio
Frosini and collaborators introduced size functions, a formalism that is equivalent
to 0-dimensional persistent homology [24]. The main direction of the pursuant work
is on shape analysis and its applications in computer vision and medical imaging;
see a recent survey [4]. In 1999, Vanessa Robins studied the homology of sam-
pled spaces and described the images of homomorphisms induced by inclusions as
persistent homology groups [39]. In 2000, Edelsbrunner, Letscher and Zomorodian
independently introduced persistent homology together with a fast algorithm and
the diagram [22], as we will discuss later. Both of these works were inspired by
the computational notion of alpha shapes [21, 23] and the related Betti number
algorithm [16]. Within mathematics, there is a distinct relationship with spec-
tral sequences, originally introduced in 1946 by Jean Leray [34]. Motivated by its
significant applications, persistent homology has found repeated exposure in the
popular mathematics literature [5, 27, 45] and features prominently in a recent text
on computational topology [20].
Perspectives. In a nutshell, persistent homology expands the relationship between
a topological space and its homology groups to that between a function and its
persistence diagram. The latter relationship gives rise to a rich theory which invites
different perspectives if studied with different mind-sets.

Mathematics:: We see an extension of the algebraic theory of homology
forming a bridge to measure theory. The extension is inspired by Morse
theoretic reasoning taken to the algebraic level of homology groups con-
nected by maps.

Computation:: The persistent homology groups are computed by reducing
the boundary matrices of complexes. Indeed, all algebraic relationships
have parallels in the matrix representation.

Applications:: The matrices give fast algorithms and the algebra leads to
scale-dependent measurements of spaces. Importantly, these measurements
are stable, they can be used to compare and analyze shapes, and they can
be exploited to repair faulty topology.

Depending on the interest, we focus on different aspects of the method. We present
the material in two main sections, first explaining the theoretical framework of
persistent homology, and second sketching four applications selected to highlight
different aspects of the theory.

2. The Theory

In this section, we discuss the mathematical and computational representation of
topological spaces, the algebra obtained by applying the homology functor, the im-
plications of this construction to measuring topology, and algorithms that compute
the groups in this algebra.

2.1. Spaces and Functions. Persistent homology is applied to a filtered space or,
equivalently, to the sequence of sublevel sets of a real-valued function on this space.
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We discuss how to extract both ingredients, a space and a function, from different
kinds of data.
Data. Sometimes the data already comes as a real-valued function, such as digi-
tal images. They are usually laid out on a regular integer grid, in which every
cell records the locally averaged intensity value of the measured light field. Most
common are 2D images in which the cells are squares, but also time-series of 2D
images and 3D images are widely used. Indeed, digital images form one of the most
important classes of data as they are inexpensive to acquire and they probe nature
in exquisite detail.

Another prevailing form of input data are point clouds, finite subsets of some
ambient space, most often Euclidean. Each point represents a sequence of mea-
surements of an individual in a population. We typically want to understand the
overall shape of the cloud, for example, by measuring the topology of the space we
get by thickening each point to a ball and taking the union. Equivalently, we may
introduce the distance function that maps each point of the ambient space to its
distance from the nearest data point. Letting α be the radius of the balls, we get
the union as the sublevel set, defined as the set of points with function value at
most α. A crucial property of this construction is its stability: if the input data
follows an underlying law that appears as a shape in the ambient space, then the
function we construct is close to the distance function defined by that shape and
thus facilitates the study of the latter.

A third class of input data are shapes, subsets of ambient space that satisfy
regularity conditions of one kind or another. A common subclass consists of surfaces
in R3, e.g., obtained by collecting points on the boundary of a solid object with
a 3D scanner and connecting the points to a surface by interpolation. As in the
point cloud case, the function is typically constructed in a second step, perhaps to
highlight or define features of the shape, such as protrusions or cavities. In the case
of a surface, popular such functions are the mean and the Gaussian curvature, as
well as the eccentricity [30]. There are plenty of other possibilities — with special
constructions for special purposes — such as the elevation function defined in terms
of the persistent homology of the 2-parameter family of height functions in R3 [1].
Complexes. Following a long-standing tradition in topology, we work with com-
plexes to represent continuous spaces. Common examples are CW-, cubical and
simplicial complexes, to name a few. Cubical complexes have already been men-
tioned as the basis of digital images. They consist of cubes of various dimensions,
with the requirement that with every p-cube, the complex also contains the 2p
(p− 1)-cubes that are its faces. Significant improvements in the efficiency of com-
putations are gained if we store cubical subdivisions hierarchically, such as in quad-
and oct-trees [40]. The CW- and simplicial complexes are extreme examples on op-
posite ends of the spectrum. The CW-complexes allow for complicated cells glued
to each other in complicated ways and thus facilitate representations of spaces with
only a few cells. In contrast, all cells in a simplicial complex are simplices, and any
two are glued along a single shared face or not at all. In spite of the frequently
required large number of simplices, the local simplicity of these complexes lends
itself to efficient computations.

Every simplicial complex has an abstract and a geometric side, and it is useful to
fully exploit both. Take, for example, the nerve of a finite collection of convex sets;
that is: the system of subcollections with non-empty common intersection. This
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is an abstract simplicial complex since every collection U in the nerve implies the
membership of the subsets of U . A particularly useful collection of convex sets are
the Voronoi cells of a finite set of points in Rn [43]. Assuming general position, the
maximum number of Voronoi cells with non-empty common intersection is n + 1.
In this case, the nerve has a natural geometric realization, known as the Delaunay
triangulation of the points in Rn [15]. Specifically, for each U in the nerve of the
Voronoi cells, the Delaunay triangulation contains the convex hull of the points
whose Voronoi cells are in U . This simplicial complex supports computations of
the Euclidean distance function defined by the points. Indeed, the sublevel set of a
threshold α > 0 is a union of balls of radius α, one around each point. Intersecting
each ball with the corresponding Voronoi cell gives another collection of convex
sets, and its nerve is isomorphic to a subsystem of the nerve of the Voronoi cells.
Its geometric realization is known as the α-complex [21, 23], which is, of course, a
subcomplex of the Delaunay triangulation.

There are many situations in which the Delaunay triangulation is not defined, or
we cannot afford to compute it. A popular alternative is the Vietoris-Rips complex,
which exists whenever we have the distances between pairs of points. Given a
threshold a > 0, this complex contains a simplex spanned by p+ 1 points iff every
two of these points are at distance at most a from each other. Equivalently, the
Vietoris-Rips complex for parameter a is the flag complex built on the set of edges
with length at most a.

2.2. Algebra. The classic theory of homology maps a topological space to an
abelian group which, in the case of coefficients in a field, is a vector space. Having
a filtered space, we get a sequence of vector spaces, together with linear maps in-
duced by inclusion. This is the basic set-up for persistent homology, which we now
describe.
Homology. The theory of homology is a classic subject within algebraic topology,
which is described in most of the standard texts, including Munkres [38] and
Hatcher [28]. The construction begins with a chain group, Cp, whose elements
are the p-chains, which for a given complex are formal sums of the p-dimensional
cells. The boundary homomorphism, ∂p : Cp → Cp−1, maps each p-chain to the sum
of the (p− 1)-dimensional faces of its p-cells, which is a (p− 1)-chain. Writing the
groups and maps in sequence, we get the chain complex :

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . .(1)

The kernels and the images of the boundary homomorphisms are the cycle and the
boundary groups. A fundamental property of the boundary homomorphism is that
its square is zero, ∂p ◦ ∂p+1 = 0. Therefore, for every p, the boundaries form a
subgroup of the cycles, and we can take the quotient, which gives a group whose
elements are classes of homologous cycles. This is the p-th homology group, denoted
as Hp, where p is again the dimension. We assume coefficients in a field, F, so that
Hp = F ⊕ F ⊕ . . . ⊕ F = Fβp is a vector space over F, with βp = rankHp known as
the p-th Betti number. For a topological space, X, we write Hp(X) and βp(X) for
its p-th homology group and Betti number. They are defined for every integer, p,
but if the dimension of X is n, then the only possibly non-trivial homology groups
are for 0 ≤ p ≤ n. Accordingly, we have βp = 0 unless 0 ≤ p ≤ n. To simplify the
notation, we will often suppress the dimension and write H(X) =

⊕
p Hp(X) for the

direct sum.
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Let X0 ⊆ X be a topological subspace. Every cycle in X0 is also a cycle in X,
although it may be trivial in the latter without being trivial in the former. The
inclusion of X0 in X induces a linear map on the homology groups, ϕ : H(X0) →
H(X). We will also consider the pair of spaces, (X,X0), whose (relative) homology
is obtained by identifying cycles that differ only inside X0. We have again a linear
map induced by inclusion, ψ : H(X) → H(X,X0). Furthermore, there is a third
linear map, D : H(X,X0)→ H(X0), such that

. . .
Dp+1−→ Hp(X0)

ϕp−→ Hp(X)
ψp−→ Hp(X,X0)

Dp−→ Hp−1(X0)
ϕp−1−→ . . .(2)

is exact, by which we mean that the image of every map is the kernel of the next
map. This particular sequence is the exact sequence of the pair (X,X0). It is
a compact expression of how the relative homology of the pair is related to the
(absolute) homology of the two spaces.
Filtrations. The basic set-up for persistent homology consists of a filtered space,
a nested sequence of subspaces that begins with the empty and ends with the
complete space [22, 48]. Writing ∅ = X0 ⊆ X1 ⊆ . . . ⊆ Xm = X, we apply the
homology functor, which for each space gives a vector space and for each inclusion
gives a linear map:

0 = H(X0)→ H(X1)→ . . .→ H(Xm) = H(X),(3)

referring to this sequence as a persistence module. It is instructive to split the
module into indecomposable summands of the form 0 → F → . . . → F → 0, where
every nonzero map is the identity. There is a unique such decomposition whose
direct sum gives the original module. Each summand can be interpreted as the
birth of a homology class at its first non-zero term and the death of the same class
right after its last non-zero term. More precisely, the summand represents an entire
coset of classes that are born and die together, but we prefer to simplify language by
talking about generators. It should be clear that the module above is not necessarily
exact. In fact, it is exact iff each summand is of the form 0 → F → F → 0,
consisting of precisely two non-zero terms. Of particular significance is the length
of a summand, which measures the duration of the corresponding class. We refer
to it as the persistence of the homology class. When a filtration results from a
function, we often define persistence not as the number of non-zero terms but
rather as the absolute difference between the function values at the birth and the
death. A related concept are the persistent homology groups, which are the images
under the composition of the linear maps. For example, the image of H(Xi) in
H(Xj) is such a group, and its rank is the number of indecomposable summands
whose births happen at or before H(Xi) and whose deaths happen after H(Xj).

Since (3) ends with a possibly non-trivial group, some homology classes may
never die. We set the value at the death to ∞, but doing so deprives us of a
meaningful measure of the duration of such a class. Alternatively, we may add
relative homology classes constituting a second pass:

0 = H(X0)→ . . .→ H(Xm)→ H(X,Xm)→ . . .→ H(X,X0) = 0,(4)

where Xi is the closure of X − Xi. This is the extended persistence module as
introduced in [12]. Decompositions into summands, births, and deaths are defined
as before. Now every class that is born also dies. We distinguish between three
kinds: classes that are born and die during the first pass, classes that are born
during the first pass and die during the second pass, and classes that are born and
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die during the second pass. The second kind comprises all classes of the entire
space, X, which are precisely the ones that were born but did not die in (3).

Beyond homology groups, the above decomposition holds for any linear sequence
of vector spaces. In this context, we note the connection between persistence and
quiver representations observed in [6]. A fundamental result for quivers states that
the orientation of maps between vector spaces does not affect the structure of the
indecomposable summands [17]. This implies that a module can be replaced by
a sequence in which any two contiguous vector spaces are connected by a map —
either from left to right, or from right to left. Such generalized sequences, referred
to as zigzag modules, elucidate the relationship between the extended persistence
and the homology of interlevel sets of scalar functions [7].

2.3. Measuring. The persistence of a homology class is the length of the interval
that supports it. The connection to applications is that the persistence measure-
ment carries useful information about spaces, functions, and data. A particularly
useful property of this measurement is its stability under perturbations of the func-
tion, as we explain in this section.
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Figure 1. Left: the height function with six critical points on a
topological sphere. We also show five interleaving level sets and
highlight one sublevel set. Right: the persistence diagram with
two finite and two infinite points. The wedge anchored at (x, 0)
contains two points labeled 0 and one point labeled 1, implying
that the highlighted sublevel set has β0 = 2 and β1 = 1. Below:
the barcode representation of the same information.

Persistence diagrams. The splitting into indecomposable summands suggests a com-
binatorial representation as a multi-set of points in the extended 2-dimensional
plane. Let f : X → R be continuous. With a minor modification of the original
construction, we build this multi-set by adding a copy of the point 1

2 (y + x, y − x)
for each summand with birth at x and death at y; see Figure 1. We refer to this
multi-set as the persistence diagram of the function f , denoting it as Dgm(f), or
as Dgmp(f) if it is restricted to classes of dimension p. Instead of the points in the
plane, we sometimes draw the intervals defined such that a point u ∈ Dgm(f) is
contained in a wedge anchored at (x, 0) iff x is contained in the interval of u; see
Figure 1. The multi-set of such intervals is the barcode of the function f . Using
this wedge, we can determine the Betti numbers of the corresponding sublevel set
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simply by counting the points of the diagram it contains. More generally, the points
of the diagram contained in the wedge anchored at 1

2 (y + x, y − x) determine the
rank of the persistent homology group defined by the inclusion of the sublevel set
for x in the sublevel set for y.

Some modifications are in order if we substitute the extended module (4) for the
ordinary module (3). Since we get each value twice, we get a multi-set in a double
covering of the plane. As a benefit of the complication, we can read the ranks of
the persistent homology groups of all sublevel and superlevel sets as well as of all
level and interlevel sets of the function; see [7].
Stability. To compare the diagrams of two functions, f, g : X → R, we may use
the Wasserstein distance between them, which is defined as the q-th root of the
infimum, over all matchings between the points, of the sum of q-th powers of the
edge lengths:

Wq(Dgm(f),Dgm(g)) = inf
γ

 ∑
u∈Dgm(f)

‖u− γ(u)‖q∞

 1
q

,(5)

where q is a positive real number; see e.g. [42]. In the limit, for q going to infinity,
we get the bottleneck distance, which is the length of the longest edge in the best
matching. For these definitions to make sense, we add infinitely many copies of
every point on the horizontal axis to the diagrams; they guarantee that there are
bijections between the multi-sets. An important property of the bottleneck distance
is its stability with respect to perturbations. Specifically, we have

W∞(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞,(6)

whenever f and g are both tame, by which we mean that they have only finitely
many critical values, and all sublevel sets have finite rank homology groups. This
is the Bottleneck Stability Theorem first proved in [11]. A word of caution is in
order: (6) implies that the critical value pairs that define the points in the diagram
are stable, but it does not imply that the critical values or the critical points are
stable. In fact, they are not.

While the bottleneck distance leads to a very general stability result, it has
drawbacks in practice because it is sensitive to only the worst edge in the best
matching. The other Wasserstein distances do not imply stability for quite as
general a class of functions, but they do so for interesting classes, such as for
Lipschitz functions [13]. A different extension of the stability result — from tame
functions to parametrized families of vector spaces — appears in [10].

2.4. Computation. An alternative to the algebraic description of homology based
on chain complexes is the computational description based on boundary matrices.
The algorithms form the bridge that connects the rich field of algebraic topology
with applications, as discussed in Section 3.
Matrices and ranks. The p-th boundary matrix, denoted as Dp, is a computationally
convenient representation of the p-th boundary homomorphism, ∂p. Its columns are
indexed by the p-dimensional cells, its rows by the (p − 1)-dimensional cells, and
Dp[i, j] stores the coefficient of the i-th (p − 1)-cell in the boundary of the j-th
p-cell. Recall that a p-chain is a formal sum of p-cells. Writing it as a column
vector, c, we can multiply with the matrix to get its boundary, Dpc, again written
as a column vector. By construction, the column space of Dp is isomorphic to the
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group of (p − 1)-boundaries. Similarly, the null space of Dp is isomorphic to the
group of p-cycles. Since the p-th homology group is the quotient of the p-th cycle
group over the p-th boundary group, we get its rank as the dimension of the null
space of Dp minus the dimension of the column space of Dp+1. To compute these
dimensions, we put the boundary matrices into normal form in which an initial
segment of the diagonal contains 1’s while the rest of the matrix is zero. To do this,
we use elementary row and column operations:

1. exchange two rows or two columns;
2. add a row to another row or a column to another column;
3. multiply a row or a column with a coefficient from the field.

Similar to Gauss-Jordan elimination, we apply these operations to move a 1 to
the upper-left corner and to zero out its row and its column. The normal form
is then completed by recursing on the smaller matrix obtained by removing the
lead row and the lead column. Of course, the recursion halts when the remaining
matrix is empty or zero. The row operations can be summarized by multiplying the
boundary matrix from the left, and the column operations by multiplying from the
right. This gives Np = Up−1DpVp, where Np is the matrix in normal form, which
provides all the information we need:

zp = #zero columns in Np = rank of null space;

bp = #non-zero columns in Np+1 = rank of column space;

βp = zp − bp = rank of homology group.

The auxiliary matrices, Up−1 and Vp, provide additional information, which is some-
times useful. In particular, the last zp columns of Vp give a basis of the p-th cycle

group, and the first bp−1 columns of the inverse, U−1p−1, give a basis of the (p− 1)-st
boundary group.
Preserving order. We can do more with less: we can compute homology as well as
persistence while stopping short of reducing the boundary matrix to normal form.
To describe how this works, we put all boundary information into a single matrix,
D. We assume that the topological space is constructed one cell at a time, making
sure that each cell is preceded by its faces. Denoting the corresponding ordering
of the cells by σ1, σ2, . . . , σm, D[i, j] is the coefficient of σi in the boundary of σj .
We reduce D with a subset of the column operations, refraining from exchanging
columns and adding columns from left to right. The algorithm pays special atten-
tion to the lowest non-zero entry in each column, which we may assume is 1. If all
lowest 1s appear in distinct rows, then the matrix is reduced. To get D into this
form, we iterate through the columns from left to right, reducing each column by
subtracting multiples of conflicting preceding columns. The greedy nature of the
process ensures that the resulting matrix is reduced. As before, we can express the
operations as a multiplication with another matrix: R = DV , where R is reduced
and V is invertible and upper-triangular. While this decomposition is not unique,
the lowest 1s in R are unique [14]. We get all information from their number and
their locations within the reduced matrix. Similar to before, the number of zero
columns that belong to p-cells is the rank of the p-th cycle group, and the number
of lowest 1s in columns of p-cells is the rank of the (p− 1)-st boundary group. But
we can extract more:

• adding σj gives birth to a homology class iff column j of R is zero;
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• in contrast, adding σj kills a homology class iff column j is non-zero; letting
R[i, j] be its lowest 1, σj kills the class born with the addition of σi.

If non-zero, column j of R contains a cycle representative of the dying class; it is the
boundary of the chain in column j of V . To prove these relationships, we assume
again that R[i, j] is the lowest 1 in column j. The representative cycle of the dying
class thus contains σi, which implies that it did not exist before the addition of σi.
All classes born before the addition of σi cannot die with the addition of σj , else
we could prove inductively that R is not yet reduced.

The above greedy algorithm is due to [22]. Its running time is the total squared
persistence of the filtration. In the worst case, it is proportional to m3 but shows
significantly better performance in practice. The worst-case time can be improved
to mω, where ω = 2.372 . . . [37], which is the currently best upper bound on the
complexity of matrix multiplication [46]; see also Strassen [41] for a milestone paper
in the sequence of improvements. These algorithms work for arbitrary boundary
matrices, while we can sometimes exploit special structure to get faster algorithms.
For example, if our space is a 2-manifold, we can use Poincaré duality and limit the
computation to 0-dimensional homology. In this case, a combinatorial algorithm
maintaining disjoint sets computes persistence in time proportional to m logm [26].
A common special case are regular cubical grids used in image processing. The
algorithm in [44] takes full advantage of the possibility to compute boundaries
implicitly, through subscript computations in an array. Additional savings are
possible if we use hierarchical cubical complexes [3], such as quad- and oct-trees.

3. The Practice

In this section, we discuss four applications of persistent homology: the first to
atomic structures highlighting the role of scale, the second to human jaws illustrat-
ing derived metrics, the third to root systems controlling topological connectivity,
and the fourth to natural images mapping data to high dimensions.

3.1. The Atomic Structure of Material. Nature is full of structures that pos-
sess features on multiple scales. Persistent homology quantifies scale and can be
used to measure the relative abundance of one scale to another. In this section,
we approach simulated organic material from this angle, following the work of
MacPherson and Schweinhart [36], who take steps toward characterizing the sta-
tistical distribution of scale.
Pockets and cages. Let X be a union of finitely many closed balls in R3. We may
think of X as the geometric model of a protein, as commonly used in structural
molecular biology [33]. More interesting for biological questions than the model
itself is, in many ways, its complement. The cavities of the model are prime candi-
date areas for interactions with small ligands and other proteins. Here, ‘cavity’ is
an informal term for a depression or a partially protected area of the surface that
is still accessible from the outside. In an effort to make this intuition concrete, [19]
introduces the notion of a pocket, which is a subset of R3 − X that turns into a
void under uniform thickening of X; see [35] for a biologically motivated study of
their volume and shape. Similar to the evolution under thickening, which can be
complicated, pockets exhibit hierarchical structure. Without going into detail, we
note that each pocket of X corresponds to a point in the 2-nd persistence diagram
of the distance function, dX : R3 → R, defined by the geometric model. A point
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u = 1
2 (y + x, y − x) corresponds to a void that forms at the thickening radius x

and disappears at the radius y. The existence of this point does not contradict the
possibility of the void splitting up into two at a radius x < r < y, with one of the
two voids disappearing at r < s < y. In this particular case, we have a side pocket
that corresponds to another point, 1

2 (s+ r, s− r), in Dgm2(dX).
This interpretation of points in Dgm2(dX) raises the question about the meaning

of points in the 0-th and the 1-st diagrams. We find a common metaphor by
interpreting their geometric realizations as cages with dimension and scale. For
example, the pocket corresponding to u cages a ball of radius between x and y; it
does not have enough space for a ball of radius larger than y, and it cannot prevent
a ball of radius smaller than x from escaping. Similarly, a point v = 1

2 (y+x, y−x) in
Dgm1(dX) cages an endless tube of cross-section radius between x and y. Indeed,
we can move the tube through the partial loop, but we cannot remove it unless
we find a place where its cross-section has radius less than x. Finally, a point
w = 1

2 (y + x, y − x) in Dgm0(dX) cages a closed surface uniformly thickened to
radius between x and y.
Random polymers. We construct idealized geometric models of polymers iteratively,
at each step randomly adding a unit ball to the growing structure. We call the result
a branched polymer if the new ball is glued at a single point, and this point is chosen
uniformly at random. As illustrated in Figure 2, the set of points on the boundary
that are available for gluing can be constructed by first doubling the radius and
second shrinking the boundary back to the original model. This set is a union of

Figure 2. A collection of 12 touching unit disks. The set of points
on the boundary where a 13-th disk can be glued without creating
any additional intersection is constructed using the boundary of
the union of the disks with twice the radius.

open patches on the spheres bounding the balls, and its area can be computed using
software based on alpha shapes [31]. To have a comparison, we introduce Brownian
trees, which are constructed the same way except that the uniform distribution over
the mentioned set is replaced by another distribution that takes into account the
difficulty of reaching a point with a unit ball approaching the union by Brownian
motion from infinity. The branched peptides and the Brownian trees are easy to
distinguish. Indeed, a branched peptide cannot have a large void; a ball that could
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comfortably fit inside would be added sooner or later. In contrast, a Brownian
tree can protect a large void with narrow entrances. Letting dP , dT : R3 → R be
the distance functions defined by a branched peptide and by a Brownian tree, we
therefore expect points with large persistence in Dgm(dT ) but not in Dgm(dP ).

There is a less obvious difference in the horizontal or scale direction. Let Pp(x)
be the number of points in Dgmp(dP ) with death value plus birth value at least
2x, and let Tp be the similarly defined function for the Brownian tree. MacPherson
and Schweinhart find experimental evidence that P1 and P2 are both roughly a
constant times 1

x2 , which is the motivation to say that the branched peptides have
persistence dimension 2, both for 1-cages and for pockets. No such exponent seems
to exist for Brownian trees.

3.2. The Shape of a Human Jaw. Its stability suggests the Wasserstein dis-
tance between persistence diagrams as a similarity measure for shapes. Indeed,
it is difficult to compare shapes directly, but it is easy to compute and compare
persistence diagrams for suitably chosen functions. We discuss this approach by,
first, presenting a relation between persistence and the Gromov-Hausdorff distance
and, second, reviewing an application to human jaws.
Comparing shapes and metrics. The comparison or fitting of shapes arises in many
walks of life — too many to warrant an example. For solid shapes, we may focus
on prominent protrusions and cavities, but this is less effective when we deal with
flexible shapes. An important subclass of the latter has a boundary that folds
but does not stretch or shrink. More formally, this boundary is a space with a
constant metric. Following this line of thought, Chazal et al. [9] consider finite
metric spaces, X and Y, and use persistence diagrams as their stable signatures.
We need some definitions to state their results. A correspondence between X and
Y is a subset of X×Y whose projections back to X and to Y are the entire spaces.
The Gromov-Hausdorff distance between the two spaces is

GH(X,Y) =
1

2
inf sup

∣∣‖x− x′‖X − ‖y − y′‖Y∣∣,(7)

where we take the infimum over all correspondences, γ, and the supremum over
all pairs (x, y) and (x′, y′) in γ. With this definition in place, we consider the
Vietoris-Rips complex for a distance threshold, a ≥ 0. Specifically, we draw an
edge between any two points at distance at most a, and we let Ripsa(X) be the flag
complex defined by these edges; see Section 2.1. Varying a, we let RX be the result-
ing sequence of spaces, and, applying the homology functor, we get a persistence
module characterized by the persistence diagram, which we denote as Dgm(RX). A
consequence of the main result in [9] is a relation between the bottleneck distance
and the Gromov-Hausdorff distance:

W∞(Dgm(RX),Dgm(RY)) ≤ GH(X,Y).(8)

We thus get a lower bound on a quantity that is generally difficult to compute
and to approximate. If we accept the Gromov-Hausdorff distance as a reasonable
comparison of metric spaces, we can use the bottleneck distance between persistence
diagrams to disprove that two spaces are similar. But because the inequality is one-
sided, we cannot prove their similarity.
Average and individual jaws. An important shape in orthodontics is the human jaw.
Comparisons between them have several practical applications: one being the recog-
nition of medical conditions, such as the Habsburger chin; another is the monitoring
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of ongoing treatments. Traditionally, this comparison is done with a standardized
version of the landmark method in statistical shape analysis [18]. Here, we describe
an enhancement of this method using persistent homology, as employed by Gamble
and Heo [25]. In this particular study, they consider a collection of N = 240 jaw
bones, each represented by k = 22 landmark points chosen by an expert for their
clinical relevance. The points are labeled and denoted as uji , for 1 ≤ i ≤ k and
1 ≤ j ≤ N . After aligning the jaw bones in R3, we average the landmarks to get k

points ui = (
∑N
j=1 u

j
i )/N , which we call the mean shape of the N data sets. The

k points define a Delaunay triangulation, D, which is a 3-dimensional simplicial
complex with probability 1. We view it as an abstract (as opposed to geometric)
simplicial complex, and filter it differently for each data set. To describe this filtra-
tion, let Dj be the j-th copy of the Delaunay triangulation, and define the weight
of the edge connecting the points ui and ui′ as

weightj(i, i
′) =

‖uji − u
j
i′‖∑N

`=1 ‖u`i − u`i′‖
.

Inspired by the construction of the Vietoris-Rips complex, we use a real threshold
a ≥ 0 and filter Dj by taking the maximal subcomplex whose edges have weight at
most a. This gives N filtrations of the Delaunay triangulation and, correspondingly,
N persistence diagrams, one for each data set.

The final analysis is done in the space of persistence diagrams, which is an
important point in this story. Fixing q = 2, we get the Wasserstein distance,
Wq, between every pair of diagrams. Doing this for individual dimensions but
also for the cumulative diagrams, the most interesting results appear in dimension
1. Switching to traditional methods, the pairwise Wasserstein distances are used
to embed the data as points in R2 using multidimensional scaling [32]. Closely
examining the results, Gamble and Heo find that one of the coordinates correlates
with the expansion of the jaw — the treatment used on the patients. In particular, it
distinguishes between the control group and the two treatment groups as they evolve
over time. Interestingly, the inter-landmark distances that have the highest positive
correlation with that coordinate are those that cross the mouth and measure the
width of the jaw.

3.3. The Connectivity of Root Systems. A common theme in the reconstruc-
tion of shapes is topologically correct connectivity. One example are brain surfaces,
which, at the commonly adopted scale, all have the topology of the 2-dimensional
sphere. Another example are root systems of agricultural plants, which are thick-
ened 1-dimensional trees. In this section, we focus on the contribution of persistent
homology to the control of the topological connectivity.
Reconstruction by ordered selection. A common paradigm in the reconstruction of
shapes is the selection of cells from an underlying collection, U . This is often
facilitated by estimating a fitness value for each cell; that is: a function f : U → R.
Given a threshold, α, we select all cells with fitness at least α. In other words, we
reconstruct the shape f−1[α,∞). This is also the strategy in the reconstruction of
root systems as described in [47]. Inevitably, there are cells with fitness value close
to the threshold for which the decision depends on chance. To avoid such cases, we
may put effort into improving the accuracy of the fitness function. Here, we follow
an alternative approach that uses global information to influence the selection.
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To make the setting more concrete, assume U is a decomposition of a compact
subset of R3 into unit cubes called voxels. The information about the root system
is obtained from a collection of 2-dimensional photographs taken from different
directions, each segmented into foreground and background, the former being the
projection of the root system onto the plane of the camera. We construct the
shape as the collection of voxels all of whose projections belong to foregrounds.
To make this more realistic, we allow for ambiguity entering the setting through
uncertainty about the position and the angle of the camera, imperfect lighting
conditions, optical distortion, shape details that challenge the resolution of our
observations, etc. Instead of a binary we get a real-valued fitness function, as
discussed earlier. To shed light on the dependence of the reconstruction on the
threshold, we sort the voxels in the order of non-increasing fitness, adding their
square sides, edges, and vertices, making sure that every cell (of any dimension)
succeeds its faces in the ordering. We call the result a filter, listing its cells in
order as σ1, σ2, . . . , σm. Letting Ki be the complex consisting of σ1 to σi, we get a
filtered complex: ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km. Each complex Ki is our best choice
for f(σi) ≥ α > f(σi+1).

How do we know that it would not be better to use a slightly different threshold or
to permute some of the cells with same or similar fitness values? We use persistence
to elucidate this question. When the target connectivity is clear, this perspective
leads to improved local choices. For a root system, we expect β0 = 1 and β1 =
β2 = 0; that is: a connected shape without tunnels and voids.
Local reordering. To get started, we apply the homology functor to get a persistence
module 0 = H(K0)→ . . .→ H(Km). As explained in Section 2.2, homology classes
are born and die. In our case, they correspond to components, loops, and closed
walls. Since the complex is built up one cell at a time, we can associate these events
with individual cells.

dim = 0:: a vertex gives birth to a new component; there is no other case.
dim = 1:: an edge gives either birth to a loop, or it kills a component by

bridging the gap to another component.
dim = 2:: a square gives either birth to a wall, or it kills a loop by filling in

the last opening of the tunnel.
dim = 3:: a voxel kills a wall by filling in the last piece of the void it surrounds;

there is no other case.

Importantly, we can associate each birth with a death, or with infinity if it marks
a homology class of the last complex. We visualize these pairs as intervals in
the barcode, paying special attention to the ones that contain the threshold, α.
Suppose there are β0 +β1 +β2 such intervals, and note that they correspond to the
components, loops, and walls in Ki, where f(σi) ≥ α > f(σi+1). In the lucky case,
we have β0 = 1 and β1 = β2 = 0, and, therefore, a connected reconstruction of the
root system, without loops or voids, as desired. Otherwise, we aim at removing
all surplus intervals, which we do by modifying the fitness values of the cells. This
may lead to changes in the ordering, which we decompose into transpositions of
contiguous cells, an operation we discuss next.

Suppose we increase the fitness of a cell σ = σ`, let τ = σ`−1 be the cell to its
left, and assume that the increase improves the fitness of σ beyond that of τ . If
there is no dependence between σ and τ , then we can just transpose them. If the
transposition affects the pairing we call it a switch and refer to [14] for a complete
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analysis and a fast update algorithm. The most interesting case is the switch
in which σ and τ change their status: from giving birth to giving death and vice
versa. Finally, if τ is a face of σ, then the transposition is prohibited, and we have to
increase the fitness value of τ along with that of σ. Moving τ may have an adverse
effect on the connectivity at α since τ may be the endpoint of another interval.
Indeed, obstacles to repair cannot always be avoided as the general problem of
optimal reconstruction is NP-hard [2]. Notwithstanding these shortcomings, the
filter is an efficient mechanism for the control of the topology of the reconstructed
shape. Considering the widespread need of topology repair in the applications, this
presents a significant potential for the improvement of reconstruction algorithms.

3.4. The Statistics of Natural Images. After discussing low-dimensional ap-
plications, we are ready to extrapolate what we learned to dimensions beyond
the visible. The need for such extensions is substantial because scientists collect
progressively more and larger datasets whose meaning is hidden in the invisible
dimensions. An example are cancer profiles which promise to shed new light on
individual differences. In this section, we focus on high-dimensional data derived
from photographs, following the work of Carlsson et al. [8].
Image statistics. To understand the variation of receptive properties of simple cells
in the mammalian visual cortex, van Hateren and van der Schaaf [29] used a care-
fully calibrated digital camera to gather a collection of 4,212 images of natural
environments — woods, open landscapes, and urban areas. Following earlier work,
their research relates the statistics of such images to the cell properties and supports
the proposition that the cells have evolved to process natural images. Moving to-
ward a mathematically accessible setting, Carlsson et al. [8] consider the topology
of 3-by-3 high-contrast patches extracted from these photographs. Studies show
that humans look more in the regions of high spatial contrast, which justifies their
emphasis. The restriction to the small patches is especially interesting. It allows
to dramatically reduce the dimensionality of the problem to nine while preserving
information about the global statistics of the image. The patches are selected as
follows:

(1) after picking 5, 000 patches in each image, we treat each one as a vector
with nine coordinates (one per pixel) and therefore as a point in R9;

(2) we subtract the average from each component, noting that this puts every
point on a hyperplane, which we identify with R8, and moves low contrast
patches close to the origin of R8;

(3) defining the contrast of a patch as the norm of the point, we select the
1, 000 patches with highest contrast from each image;

(4) normalizing by the contrast, we obtain a set of points in the 7-dimensional
sphere in R8, which we denote as S7.

For computational reasons, the space is down-sampled further, from about four
million to 50, 000 points. Even after the initial filtering, the data set contains more
information than we can comprehend. Therefore, it is prudent to focus on its core
subsets to expose otherwise obscured phenomena. To this end, the remaining high-
contrast patches are filtered by their local densities in S7. Specifically, we compute
the distance to the k-nearest neighbor for each point, and we write X(k, P ) for the
top P percent of the points ordered by this distance measurement.
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Popular subspaces. Like the knobs on a microscope, the parameters k and P control
the focus of our view. At the coarsest scale, the space X(300, 30) consists of a single
circle, noticeable in the 1-dimensional persistence diagram of the distance function.
Inspecting it, Carlsson and collaborators find that it consists of linear gradients,
rotating around the center of the patch. In Figure 3, it is depicted by the patches
on the two horizontal gray lines; they connect into a single circle by identifying the
matching patches at their opposite ends.

Figure 3. The Klein bottle of 3-by-3 patches. The horizontal
edges are glued to each other from left to right, and the vertical
edges are glued with a twist.

After sharpening the view by transitioning to X(15, 30), the 1-dimensional per-
sistence diagram detects five prominent homology classes. Inspection of the point
set verifies the ‘3-circle model’, suggested in earlier work by Carlsson and de Silva.
In addition to the first, two more circles appear in X(15, 30) and intersect the pri-
mary circle in two points each. (The first Betti number of the resulting space is
indeed five.) In Figure 3, the matching patches at the top and the bottom are iden-
tified, turning the two dotted lines into circles. The appearance of the three circles
in the high-density subsample hints at the two preferences in natural images: linear
intensity functions as well as vertical and horizontal directions. Turning the knobs
further down and more, we fill in lower density regions. Persistent homology of the
resulting point set, taken with modulo two coefficients, acquires a 2-dimensional
class and retains two independent 1-cycles. The torus and the Klein bottle are the
only 2-manifolds with this homology. By examining how they fit into the point
set (both experimentally and theoretically), the Klein bottle prevails. Figure 3
illustrates the corresponding arrangement of the patches.

Knowing that the bulk of the points lie near a Klein bottle, Carlsson and col-
laborators push on to find an explicit representation of this 2-manifold inside S7.
The motivation is image compression. A point (a 3-by-3 patch) on the Klein bottle
is fully specified by only two coordinates. There are not many points far from the
Klein bottle, and each such point can be specified by two coordinates plus a residual
description of the difference to the projection onto the Klein bottle.
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4. Discussion

Persistent homology is a new mathematical concept that has received attention
from inside and outside mathematics. It is our interpretation that the reason for
the interest is multi-facetted. We hope that the structure of this paper has made
this point clear. In particular,

• we stress the connection to data in Section 2.1;
• we emphasize the algebraic side of persistent homology in Section 2.2;
• we explain the stability of its diagrams in Section 2.3;
• we sketch its fundamental algorithms in Section 2.4;
• we shed light on the role of scale in Section 3.1;
• we discuss derived metrics facilitating the analysis of shapes in Section 3.2;
• we exhibit the control of topological connectivity in Section 3.3;
• and we show that high dimensions aid our understanding in Section 3.4.

What are the developments we may expect to push the envelope of the method in the
next few years? We see multi-parameter persistence, the statistics of persistence,
and persistence for dynamical systems as major thrusts of the current research. All
three are driven by applications, as was persistent homology from its very beginning.
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